Cytochalasin D promotes pulmonary metastasis of B16 melanoma through expression of tissue factor.

نویسندگان

  • Feng-Ying Huang
  • Wen-Li Mei
  • Guang-Hong Tan
  • Hao-Fu Dai
  • Yue-Nan Li
  • Jun-Li Guo
  • Yong-Hao Huang
  • Huan-Ge Zhao
  • Hua Wang
  • Song-Lin Zhou
  • Ying-Ying Lin
چکیده

Cytochalasin D (CytD) targets actin, a ubiquitous protein in eukaryotic cells. Previous studies have focused mainly on the antitumor effects of CytD. We previously found CytD to promote lung metastasis in B16 melanoma cells, which we had not anticipated, and, therefore, in the present study we investigated the possible underlying mechanisms. B16 melanoma cells were co-cultured with CytD and other agents and used to establish a lung metastatic model. In this B16 melanoma metastatic model, significantly increased lung metastasis and lung weight were found in CytD-treated mice, which was almost completely suppressed by tissue factor (TF) RNA interference expressed via lentivirus. The results of northern and western blot, and real-time RT-PCR analysis showed that the expression of TF was significantly upregulated in B16 cells treated with CytD but was significantly inhibited by TF RNA interference. In addition, upregulation and phosphorylation of mitogen-activated protein kinase p38 were also found in the metastatic lung tissues treated with CytD and in the B16 cells co-cultured with CytD and factor VIIa (FVIIa), but not in cells cultured with CytD, dimethyl sulfoxide or FVIIa alone. These results indicate that CytD stimulates the expression of TF in B16 melanoma cells, activating both coagulation-dependent and -independent pathways via binding to FVIIa, eventually promoting lung metastasis. TF interference is a potential approach to the prevention of B16 melanoma metastasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of microRNA-30a and downstream snail1 on the growth and metastasis of melanoma tumor

Objective(s): Growing evidences have indicated microRNAs as modulators of tumor development and aggression. On the other hand, a phenomenon known as epithelial-mesenchymal transition (EMT) that indicates a transient phase from epithelial-like features to mesenchymal phenotype is a key player in tumor progression.  In this study, we aimed to assess the potential impacts...

متن کامل

Expression of CXC chemokine receptor-4 enhances the pulmonary metastatic potential of murine B16 melanoma cells.

The chemokine receptors CC chemokine receptor (CCR) 7 and CXC chemokine receptor (CXCR) 4 have been implicated in cancer metastasis. To evaluate whether CXCR4 is sufficient to increase tumor metastasis in an organ-specific manner, we transduced murine B16 melanoma cells with CXCR4 (CXCR4-B16) and followed the metastatic fate of the transduced cells in both i.v. and s.c. inoculation models of me...

متن کامل

Lack of plasminogen activator inhibitor-1 effect in a transgenic mouse model of metastatic melanoma.

Tumor cell invasion and metastasis is a complex, multistep process that is postulated to require degradation of extracellular matrix at several steps. Urokinase-type plasminogen activator (uPA) is expressed on the cell surface of B16 murine melanoma cells and is thought to contribute to the pericellular proteolysis necessary for tumor cell migration. In vitro modification of B16 melanoma cell s...

متن کامل

IRGM1 enhances B16 melanoma cell metastasis through PI3K-Rac1 mediated epithelial mesenchymal transition

Melanoma is one of the most aggressive skin cancers and is well known for its high metastatic rate. Studies have shown that epithelial mesenchymal transition (EMT) is essential for melanoma cell metastasis. However, the molecular mechanisms underlying EMT are still not fully understood. We have shown that IRGM1, a member of immunity-related GTPase family that regulates immune cell motility, is ...

متن کامل

In vivo knockdown of CXCR4 using jetPEI/CXCR4 shRNA nanoparticles inhibits the pulmonary metastatic potential of B16‑F10 melanoma cells.

Metastasis is a key factor that limits survival in the majority of patients with cancer. Thus, numerous efforts have been made to elucidate the molecular mechanisms involved in this phenomenon. B16‑F10 melanoma cells have been demonstrated to be highly metastatic to the lungs in mice. The aim of the current study was to investigate the role of CXC motif chemokine receptor 4 (CXCR4) in the metas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Oncology reports

دوره 30 1  شماره 

صفحات  -

تاریخ انتشار 2013